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Coarse-graining analysis of the Berreman anchoring
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By means of a coarse-graining technique, we derive the effective anchoring energy of a nematic liquid
crystal in contact with a macroscopically corrugated surface imposing a weak degenerate planar anchoring. For
coarse-grained nematic director’s profiles that vary only in the direction perpendicular to the average surface’s
plane, our results generalize those already known by including the anisotropy of the elastic constants. In the
general case, on the contrary, we show that extra surface gradient terms appear that generally are not negli-
gible. [S1063-651X99)14908-0

PACS numbsefs): 61.30-v, 68.10.Cr, 11.10.Gh

The anchoring properties of nematic liquid crystals in 1 )
contact with solid substrates generally depend on the details sz dr, > W(n-»)7, 1)
of the surface interactiond]. This is the case, e.g., of the

zenithal anchoring on a flat amorphous surface. Converselyyq e, is the unit vector normal to the undulating surface

the azimuthal anchoring on a grooved amorphous substra%dr is a : : :
) . n generic point of thex(y) plane. Expressing the
can be explained by purely elastic effefis?]. In the past, nematic director in terms of the zenithal anglevith respect

the effective azimuthal anchoring energy of a sinusoidally,[0 the (x,y) plane and of the azimuthal anglewith respect

modulated amorphous surface was derived by computing thg 1 grooves’ direction, n=(CosfCoSc,cosdsin é,sin6)
elastic energy per unit surface stored in a semi-infinite Sys(see Fig. 1, and keeping in Eq(1) only ter'ms up 10 ,second

tem, the nematic director of Wf‘!ICh is .forced to lie in the order in 6 and ¢, and to second order ia, we arrive at the
plane orthogonal to the grooves’ directiph-3]. The cases following anchoring energy

of infinite [1,2] and finite[3] zenithal anchoring were con-
sidered, in the approximation of equal elastic constants. No 1
analysis was carried out to establish to what extent such a V:f dr, —W{69[1— €?sirP(qoy) ]+ p2€? sirt(qoy)
geometric anchoring igquivalentto a true homogeneous 2
weak anchoring. This point is particularly interesting since, .
recently, using holographic techniques, controlled undulated 20 sin(qoy)}- @
surfaces were realized, making possible accurate compa
sons between theory and experimgfit
In this Brief Report, by means of a coarse-graining tech
nique, we derive exact expressions for the effective ancho
ing of a nematic liquid crystal in contact with a sinusoidally
modulated surface imposing a weak degenerate planar a
choring. Our analysis holds for small macroscopic undula-
tions around a planar average surface, and small deviations
of the nematic director from the effective easy axis. For nem- :E dr[K,(V-n)2+Ky(n-VXn)2+Ka(nX VX n)2]
atic director’s profiles that vary only in the direction perpen- = ¢ 2 ! 2 3 '
dicular to the average surface’s plane, we obtain a generali- ()]
zation of the already known results to the case of unequal
elastic constants. For general distortions, we show that sur-
face gradient terms must be generally taken into account.
Let us consider a nematic liquid crystal in contact with an
undulated surface, whose height A cos@gy) weakly de-
parts from the X,y) plane €=qyA<1). We suppose that
the nematic directon is subject to a degenerate planar an-
choring on the surface, with a finite anchoring strength
For small deviations of the nematic director from the plane
of the surface, we write the anchoring energy in the Rapini-
Papoular forn{5]

rJI:his expression holds for small deviations of the surface di-
rector from the grooves’ direction and for small inclinations
€ of the undulating surface.

In Fourier space, the total free-energyof the system,
thich is the sum of the anchoring ener@ and of the bulk
rank elastic free-enerd¥]

*Permanent address: Dipartimento di Fisica and UN&M, Po-
litecnico di Torino, C.so Duca degli Abruzzi 24, 1-10129 Torino,
Italy. FIG. 1. Geometry of the corrugated surface.
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can be written as

q

=3f did S (KG Y (—k,—qy(q) 4
2) 2myo ),
with
— 0(I’) —ik-r

‘“")‘fdr(w))e | ©

and
Gk, q)=(2m)°A(k) 8(k+q)
2
+2(27)? 2_2 W,8(k, +q, +nqo). (6)

Here §(k) is the three-dimensional Dirac delta-function;
o6(k,) is the two-dimensional Dirac delta-function in the
(x,y) plane;qe=(0,q0,0) is the wave vector of the undulat-
ing surface; the matrix

(7

corresponds to the elastic te3) developed to second order
in 6 and ¢; and, finally, the matrices

K 3kZ+ Kok + K 1k?
(Ky— Kz)kykz

(Kl_ Kz)kykz

A(k)=
(k) ( K gk + K 1KG+ Kk2

w1 o
2
W= we? | (8
0 bl
2
iWe
0o =
2
W_1=-W;= We , 9
— 0
2
We?
R 0
4
W_,=W,= we | (10
0
4

correspond to the surface teK@). For the Fourier transform
of the profile to be precisely defined, we actually consider
sample consisting of two identical semi-infinite cells extend
ing in thez>0 andz<0 half-spaces, and bounded by two
identical surfaces located at=0" andz=0", respectively:
the factor of 2 in front of the summation in the right-hand
side of Eq.(6) takes into account this doubling of the system
[7]. Note that the correlation function

G(k,q)=B(¥(k) ¥(q)),

-) indicates thermal average apd=1/kgT is the

11

where(- -
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q

f (2d )3

w

(2m)38(k+ )1,
(12

H=q,)=

wherel is the 2<2 identity matrix.

To obtain the effective anchoring energy of the equivalent
flat surface, we coarse-grdifl] the system on a wave vector
A smaller than the undulation wave vectyy, by decompos-
ing the director’s fieldys according to

Y=y ¢, (13
where
<
= ( ¢<) (14

contains the Fourier components with wave vedtdes A
and

0>
(15

contains the Fourier components with wave vedtdr A.

As it is shown in[7], the free-energy <[ 4~ ] of the coarse-
grained system, which yields the total free-energy of a given
slowly varying profileys~, taking into account the contribu-
tions coming from the high-wave-vector components, re-
mains a harmonic function af~,

fdkdq JH0G K~ (@), (16

whose HamiltonianG="1(k,q) is the inverse of the trun-
cated correlation function

G=(k,a)=G(k,q)h,(k)h,(q), 17
h, (k) being the step function
1 if |k|<A,
=10 it [k|>A. (18

In other terms, as one might expect, Efj7) expresses the
fact that the coarse-grained system has a correlation function
that coincides with the original correlation function for wave
vectors lower than the cut-ofk, and is zero for wave vec-

rs higher than the cut-off. This is so because the starting

0
(:11—|amiltonian is harmonic, which implies that the coarse-

graining yields a temperature-independent renormalization of
the Hamiltonian. By direct substitution, one can verify that
the coarse-grained Hamiltoni@i ~(k,q) can be more eas-

ily computed[7] from

G~ 1(k,q)=G (k,q)
d/dm

_f (2m)8

G Yk,/\G(=7,—m)

reciprocal temperature, coincides with the inverse of the

Hamiltonian(6), in the sense

XG Y(m,q), (19
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where the operato’f?-(k,q) is the inverse o5~ (k,q) in the
high-wave-vector subspace, i.e., it is zero ffior<A or |q]
<A, and otherwise satisfies the relation

Given the Hamiltonian(6), we look for G(k,q) satisfying
relation (20) in the form (for |k|>A and|g|>A)

G(k,q)=(2m)3A’ (k) 8(k+Qq)

+2<2w>2§ W/(K)W7(q) 8(k, +4, +ndg).

(21)
By direct substitution, we obtain the relations
A’ (k) =W, (k)=A"*(k), (22)
Wh(a)+22 Wy A~ *(— 0, —mag) W)

=-W,A"Y(—0q), (23)

whereA~1(k) is the inverse of the matrig7), and

dqg
-1 _ T2 a1

Ata=]  SEA GG (@

is the 2D Fourier transform oA~ %(r, ,z=0) truncated in

BRIEF REPORTS

PRE 60

W(k,)=Wo+223 Wi (—k,—nd)W_,  (28)
is the effective, wave-vector-dependent, coarse-grained an-

choring strength. The wave-vector dependencé\bfjives

rise to a nonlocal anchoring energy in the direct space. Ex-
pandingVV(kL) in power series ok, aroundk, =0, one
obtains a surface gradient expansion of the coarse-grained
anchoring energy. The lowest-order approximatWeri)
~W(0) yields the homogeneous part

1
vh<=f drlE(W90<2+W¢¢<2), (29
with
w,— AW 30
VAR 2w T ) (30
K KoGoW
12200 E2+0(eY. (3D

W= 2K Kah0+ (Ko + Kp)W

The renormalization of the zenithal anchorif@0) is dis-
cussed iff7]. It is best understood by noting that the zenithal
extrapolation length’,= K, /W, is augmented, with respect

to the bare extrapolation length= K, /W, by the size 2#A

over which the nematic director has been averaged by the
coarse-graining procedure. In other terms, the apparent in-
crease of the extrapolation length is caused by the elastic
energy stored in a surface layer of thicknesd\ . The
effective azimuthal anchoring31), which is purely due to
the corrugation of the surface, reproduces, in the limit of

the high-wave-vector shell. Consequently, according to Edequal elastic constants, the result of Faeif]. No

(19), the coarse-grained Hamiltonian is

G='(k,q)
=(2m)°A(k) 8(k+q)
+2(2m)% Wo+22 Wi (—k, —ngoW
n
X8k, +q,), (25
where, similar to Eq(24), we have defined
” _ dqz ”
Wio(a)=| 5 Wi, .q,), (26)
laj>A €T

and theW/(q) are implicitly defined by the set of linear

equationg23). Therefore, the bulk elasticity is not affected,
while the coarse-grained anchoring energy can be written in

Fourier space as

<_1 dki <t Kk YV? Kk < Kk
visg] ot MOWk W k), @

in which ~(k,) is the 2D Fourier transform of the long-
wavelength surface director’s profile=(r, ,z=0) and

A-dependence appears in E§1), since the renormalization
due to the cut-off is of orde¢*. Note also that the azimuthal
and the zenithal anchoring are decoupled. In the limit of
infinite anchoring strengthV— o, the effective anchoring
remain finite and of purely elastic origin

1

W9w=§wAKl+0(62), (32
KiK2 2 4

W¢x—K1+K2q0€ +O(E ) (33)

A second-order expansion of E®8) in k;, aroundk, =0
yields the surface gradient contribution

_ 1 (90< 2 (90< 2 (9¢< 2
ngfdrli W(;X (9_X +W9y W +W¢X W
(9¢< 2
+W¢y<W) ) (34)
with
2 K W2 )
Wox= +0(€%), (35
3A(TAK+2W)?
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27Ky (2K~ Ky )W?
Y 3K LA (TAK + 2W)2

+0(€?), (36)

K3(K3+3K5H)W?
4qo[ 2K 1K 500+ (K1 +K3)W]?

W g e2+0(eY), (37)

2K2K5(Kq+Ky) W2
[2K1K,Go+ (Ky+Ko) W3

Wey=

e+ 0(e*). (39

Note that Eq.38) is always negative, thus lowering the en-
ergy cost for oscillations of the azimuthal angle perpendicu

larly to the grooves’ direction; as we shall see, however, this

destabilizing term is negligible in all practical situations.

SinceA "1 is the shortest length-scale over which the coarse-

grained surface director can vary, the ratios

~W,A?

Fei ™ W

(39

ai '

a

with = 0,¢ andi=x,y, determine whether or not the gra-
dient contributions can always be neglected. Given that th
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(41) and (42) the gradient terms in the effective azimuthal
anchoring can be neglected altogether; they play a role only
when A=~qg, and only in the direction of the grooves if
/qpo<1. When the gradient terms are not negligible, the full
renormalized surface enerd®?7) must be used. The latter
has a simple expression only in the case of equal elastic
constants, for which Eq28) becomes

Wo(k,) 0

0 Wyk,) (43

W(kf(

with

tan 1(|k |[/A)] 72 )
Wg(kL)ZW 1+2WW +0(€9), (44)
W, (k) w (1+ )1+ 1+ d e
= " - €

S 4 Klago—k,| Klago+k,|
+0(€Y). (45)

To conclude, using a coarse-graining technique, we have
€lerived a general expression for the effective anchoring of a

bulk elastic constant are of comparable magnitude, we setematic liquid crystal in contact with an undulated surface.

K;=K,=K3;=K. Then, from the previous expressions,

1 A \71
Fox=loy=3 1+§%/QO , (40)
1AV 1 a1
"2l a0 T 70 @
AVZ /g0
r¢’y:_<_ 2" (42)
Yo (1+/q0)

With the same approximation, the effective homogeneou
azimuthal —anchoring energy (31) becomes W,
=1/2Kqo€e?(1+ /qo) 1. Therefore, to have a non-negligible

effective azimuthal anchoring, the bare extrapolation Iengtt}

/ must not be large with respect to the period of the undu
lating surface/qy=<1. Considering this case, sinde<qq,
according to Eq.(40) it is always necessary to take into

Our results, that are useful for the correct interpretation of
the experimental data on controlled undulated surféadés
show that the geometric azimuthal anchoring is equivalent to
a homogeneous weak anchoring only for surface distortions
which occur on a scale large with respect to the period of the
undulations.

Finally, we note that our model is based on the bulk Frank
macroscopic elastic free-energy, and therefore can be applied
only to undulated surfaces with periad=27/qq large with
respect to the characteristic siZg over which the nematic
scalar order-parameté varies close to the surface. When
é<§s, a decrease 0§ is expected in the vicinity of the
surface[9]; this effect could be taken into account by explic-
itly including S in the starting free energhl0]. Moreover,
since the surface energy is actually spread over a thin inter-
acial layer of thickness (=10nm for dispersion forces

the validity of our analysis also requiras> é.
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