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Coarse-graining analysis of the Berreman anchoring

J.-B. Fournier and P. Galatola*
Laboratoire de Physico-Chimie The´orique, ESPCI, 10 rue Vauquelin, F-75231 Paris Ce´dex 05, France

~Received 29 March 1999!

By means of a coarse-graining technique, we derive the effective anchoring energy of a nematic liquid
crystal in contact with a macroscopically corrugated surface imposing a weak degenerate planar anchoring. For
coarse-grained nematic director’s profiles that vary only in the direction perpendicular to the average surface’s
plane, our results generalize those already known by including the anisotropy of the elastic constants. In the
general case, on the contrary, we show that extra surface gradient terms appear that generally are not negli-
gible. @S1063-651X~99!14908-0#

PACS number~s!: 61.30.2v, 68.10.Cr, 11.10.Gh
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The anchoring properties of nematic liquid crystals
contact with solid substrates generally depend on the de
of the surface interactions@1#. This is the case, e.g., of th
zenithal anchoring on a flat amorphous surface. Convers
the azimuthal anchoring on a grooved amorphous subs
can be explained by purely elastic effects@1,2#. In the past,
the effective azimuthal anchoring energy of a sinusoida
modulated amorphous surface was derived by computing
elastic energy per unit surface stored in a semi-infinite s
tem, the nematic director of which is forced to lie in th
plane orthogonal to the grooves’ direction@1–3#. The cases
of infinite @1,2# and finite @3# zenithal anchoring were con
sidered, in the approximation of equal elastic constants.
analysis was carried out to establish to what extent suc
geometric anchoring isequivalent to a true homogeneou
weak anchoring. This point is particularly interesting sin
recently, using holographic techniques, controlled undula
surfaces were realized, making possible accurate comp
sons between theory and experiment@4#.

In this Brief Report, by means of a coarse-graining te
nique, we derive exact expressions for the effective anch
ing of a nematic liquid crystal in contact with a sinusoida
modulated surface imposing a weak degenerate planar
choring. Our analysis holds for small macroscopic undu
tions around a planar average surface, and small deviat
of the nematic director from the effective easy axis. For ne
atic director’s profiles that vary only in the direction perpe
dicular to the average surface’s plane, we obtain a gene
zation of the already known results to the case of uneq
elastic constants. For general distortions, we show that
face gradient terms must be generally taken into accoun

Let us consider a nematic liquid crystal in contact with
undulated surface, whose heightz5A cos(q0y) weakly de-
parts from the (x,y) plane (e[q0A!1). We suppose tha
the nematic directorn is subject to a degenerate planar a
choring on the surface, with a finite anchoring strengthW.
For small deviations of the nematic director from the pla
of the surface, we write the anchoring energy in the Rap
Papoular form@5#

*Permanent address: Dipartimento di Fisica and Unita` INFM, Po-
litecnico di Torino, C.so Duca degli Abruzzi 24, I-10129 Torin
Italy.
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V5E dr'

1

2
W~n•n!2, ~1!

wheren is the unit vector normal to the undulating surfa
and r' is a generic point of the (x,y) plane. Expressing the
nematic director in terms of the zenithal angleu with respect
to the (x,y) plane and of the azimuthal anglef with respect
to the grooves’ directionx, n5(cosu cosf,cosu sinf,sinu)
~see Fig. 1!, and keeping in Eq.~1! only terms up to second
order inu andf, and to second order ine, we arrive at the
following anchoring energy

V5E dr'

1

2
W$u2@12e2 sin2~q0y!#1f2e2 sin2~q0y!

12ufe sin~q0y!%. ~2!

This expression holds for small deviations of the surface
rector from the grooves’ direction and for small inclinatio
e of the undulating surface.

In Fourier space, the total free-energyF of the system,
which is the sum of the anchoring energy~2! and of the bulk
Frank elastic free-energy@6#

Fe5
1

2E dr @K1~¹•n!21K2~n•¹3n!21K3~n3¹3n!2#,

~3!

FIG. 1. Geometry of the corrugated surface.
2404 © 1999 The American Physical Society
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can be written as

F5
1

2E dk dq

~2p!6
c t~k!G21~2k,2q!c~q!, ~4!

with

c~k!5E dr S u~r !

f~r !
D e2 ik•r, ~5!

and

G21~k,q!5~2p!3A~k!d~k1q!

12~2p!2 (
n522

2

Wnd~k'1q'1nq0!. ~6!

Here d(k) is the three-dimensional Dirac delta-functio
d(k') is the two-dimensional Dirac delta-function in th
(x,y) plane;q05(0,q0,0) is the wave vector of the undula
ing surface; the matrix

A~k!5S K3kx
21K2ky

21K1kz
2 ~K12K2!kykz

~K12K2!kykz K3kx
21K1ky

21K2kz
2D ,

~7!

corresponds to the elastic term~3! developed to second orde
in u andf; and, finally, the matrices

W05S WS 12
e2

2 D 0

0
We2

2

D , ~8!

W2152W15S 0
iWe

2

iWe

2
0
D , ~9!

W225W25S We2

4
0

0 2
We2

4

D , ~10!

correspond to the surface term~2!. For the Fourier transform
of the profile to be precisely defined, we actually conside
sample consisting of two identical semi-infinite cells exten
ing in the z.0 andz,0 half-spaces, and bounded by tw
identical surfaces located atz501 andz502, respectively:
the factor of 2 in front of the summation in the right-han
side of Eq.~6! takes into account this doubling of the syste
@7#. Note that the correlation function

G~k,q!5b^c~k!ct~q!&, ~11!

where^•••& indicates thermal average andb51/kBT is the
reciprocal temperature, coincides with the inverse of
Hamiltonian~6!, in the sense
a
-

e

E dq

~2p!3
G~k,q!G21~2q,l !5~2p!3d~k1l !I ,

~12!

whereI is the 232 identity matrix.
To obtain the effective anchoring energy of the equival

flat surface, we coarse-grain@8# the system on a wave vecto
L smaller than the undulation wave vectorq0, by decompos-
ing the director’s fieldc according to

c5c,1c ., ~13!

where

c,5S u,

f,D ~14!

contains the Fourier components with wave vectoruku<L
and

c.5S u.

f.D ~15!

contains the Fourier components with wave vectoruku.L.
As it is shown in@7#, the free-energyF,@c,# of the coarse-
grained system, which yields the total free-energy of a giv
slowly varying profilec,, taking into account the contribu
tions coming from the high-wave-vector components,
mains a harmonic function ofc,,

F,5
1

2E dk dq

~2p!6
c,t~k!G,21~2k,2q!c,~q!, ~16!

whose HamiltonianG,21(k,q) is the inverse of the trun-
cated correlation function

G,~k,q!5G~k,q!hL~k!hL~q!, ~17!

hL(k) being the step function

hL~k!5H 1 if uku<L,

0 if uku.L.
~18!

In other terms, as one might expect, Eq.~17! expresses the
fact that the coarse-grained system has a correlation func
that coincides with the original correlation function for wav
vectors lower than the cut-offL, and is zero for wave vec
tors higher than the cut-off. This is so because the star
Hamiltonian is harmonic, which implies that the coars
graining yields a temperature-independent renormalizatio
the Hamiltonian. By direct substitution, one can verify th
the coarse-grained HamiltonianG,21(k,q) can be more eas
ily computed@7# from

G,21~k,q!5G21~k,q!

2E dl dm

~2p!6
G21~k,l !Ĝ~2l ,2m!

3G21~m,q!, ~19!
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where the operatorĜ(k,q) is the inverse ofG21(k,q) in the
high-wave-vector subspace, i.e., it is zero foruku<L or uqu
<L, and otherwise satisfies the relation

E dq

~2p!3
Ĝ~k,q!G21~2q,l !5~2p!3d~k1l !I .

~20!

Given the Hamiltonian~6!, we look for Ĝ(k,q) satisfying
relation ~20! in the form ~for uku.L and uqu.L)

Ĝ~k,q!5~2p!3A8~k!d~k1q!

12~2p!2(
n

Wn8~k!Wn9~q!d~k'1q'1nq0!.

~21!

By direct substitution, we obtain the relations

A8~k!5Wn8~k!5A21~k!, ~22!

Wn9~q!12(
m

Wn2mA.
21~2q'2mq0!Wm9 ~q!

52WnA21~2q!, ~23!

whereA21(k) is the inverse of the matrix~7!, and

A.
21~q'!5E

uqu.L

dqz

2p
A21~q' ,qz! ~24!

is the 2D Fourier transform ofA21(r' ,z50) truncated in
the high-wave-vector shell. Consequently, according to
~19!, the coarse-grained Hamiltonian is

G,21~k,q!

5~2p!3A~k!d~k1q!

12~2p!2FW012(
n

Wn.9 ~2k'2nq0!W2nG
3d~k'1q'!, ~25!

where, similar to Eq.~24!, we have defined

Wn.9 ~q'!5E
uqu.L

dqz

2p
Wn9~q' ,qz!, ~26!

and theWn9(q) are implicitly defined by the set of linea
equations~23!. Therefore, the bulk elasticity is not affecte
while the coarse-grained anchoring energy can be writte
Fourier space as

V,5
1

2E dk'

~2p!2
c,t~k'!W̄~2k'!c,~2k'!, ~27!

in which c,(k') is the 2D Fourier transform of the long
wavelength surface director’s profilec,(r' ,z50) and
q.

in

W̄~k'!5W012(
n

Wn.9 ~2k'2nq0!W2n ~28!

is the effective, wave-vector-dependent, coarse-grained
choring strength. The wave-vector dependence ofW̄ gives
rise to a nonlocal anchoring energy in the direct space.
pandingW̄(k') in power series ofk' aroundk'50, one
obtains a surface gradient expansion of the coarse-gra
anchoring energy. The lowest-order approximationW̄(k')
.W̄(0) yields the homogeneous part

Vh
,5E dr'

1

2
~Wuu,21Wff,2!, ~29!

with

Wu5
pLK1W

pLK112W
1O~e2!, ~30!

Wf5
K1K2q0W

2K1K2q01~K11K2!W
e21O~e4!. ~31!

The renormalization of the zenithal anchoring~30! is dis-
cussed in@7#. It is best understood by noting that the zenith
extrapolation lengthl u5K1 /Wu is augmented, with respec
to the bare extrapolation lengthl 5K1 /W, by the size 2/pL
over which the nematic director has been averaged by
coarse-graining procedure. In other terms, the apparen
crease of the extrapolation length is caused by the ela
energy stored in a surface layer of thickness'L21. The
effective azimuthal anchoring~31!, which is purely due to
the corrugation of the surface, reproduces, in the limit
equal elastic constants, the result of Faetti@3#. No
L-dependence appears in Eq.~31!, since the renormalization
due to the cut-off is of ordere4. Note also that the azimutha
and the zenithal anchoring are decoupled. In the limit
infinite anchoring strength,W˜`, the effective anchoring
remain finite and of purely elastic origin

Wu`5
1

2
pLK11O~e2!, ~32!

Wf`5
K1K2

K11K2
q0e21O~e4!. ~33!

A second-order expansion of Eq.~28! in k' aroundk'50
yields the surface gradient contribution

Vg
,5E dr'

1

2 FWuxS ]u,

]x D 2

1WuyS ]u,

]y D 2

1WfxS ]f,

]x D 2

1WfyS ]f,

]y D 2G , ~34!

with

Wux5
2 pK3W2

3L~pLK112W!2
1O~e2!, ~35!
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Wuy5
2pK1~2K22K1!W2

3K2L~pLK112W!2
1O~e2!, ~36!

Wfx5
K3~K2

213K1
2!W2

4q0@2K1K2q01~K11K2!W#2
e21O~e4!, ~37!

Wfy52
2K1

2K2
2~K11K2!W2

@2K1K2q01~K11K2!W#3
e21O~e4!. ~38!

Note that Eq.~38! is always negative, thus lowering the e
ergy cost for oscillations of the azimuthal angle perpendi
larly to the grooves’ direction; as we shall see, however,
destabilizing term is negligible in all practical situation
SinceL21 is the shortest length-scale over which the coar
grained surface director can vary, the ratios

r a i5
Wa iL

2

Wa
, ~39!

with a5u,f and i 5x,y, determine whether or not the gra
dient contributions can always be neglected. Given that
bulk elastic constant are of comparable magnitude, we
K15K25K3[K. Then, from the previous expressions,

r ux5r uy5
1

3 S 11
p

2

L

q0
l q0D 21

, ~40!

r fx5
1

2 S L

q0
D 2 1

11l q0
, ~41!

r fy52S L

q0
D 2 l q0

~11l q0!2
. ~42!

With the same approximation, the effective homogene
azimuthal anchoring energy ~31! becomes Wf
51/2Kq0e2(11l q0)21. Therefore, to have a non-negligib
effective azimuthal anchoring, the bare extrapolation len
l must not be large with respect to the period of the un
lating surface,l q0&1. Considering this case, sinceL,q0,
according to Eq.~40! it is always necessary to take int
account the gradient terms in the effective zenithal anch
ing. On the contrary, provided thatL!q0, according to Eqs.
le
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-

e
et

s

h
-

r-

~41! and ~42! the gradient terms in the effective azimuth
anchoring can be neglected altogether; they play a role o
when L'q0, and only in the direction of the grooves
l q0!1. When the gradient terms are not negligible, the f
renormalized surface energy~27! must be used. The latte
has a simple expression only in the case of equal ela
constants, for which Eq.~28! becomes

W̄~k'!5S Wu~k'! 0

0 Wf~k'!D , ~43!

with

Wu~k'!5WF112W
tan21~ uk'u/L!

pKuk'u G21

1O~e2!, ~44!

Wf~k'!5
W

4 F S 11
W

Kuq02k'u D
21

1S 11
W

Kuq01k'u D
21Ge2

1O~e4!. ~45!

To conclude, using a coarse-graining technique, we h
derived a general expression for the effective anchoring o
nematic liquid crystal in contact with an undulated surfa
Our results, that are useful for the correct interpretation
the experimental data on controlled undulated surfaces@4#,
show that the geometric azimuthal anchoring is equivalen
a homogeneous weak anchoring only for surface distorti
which occur on a scale large with respect to the period of
undulations.

Finally, we note that our model is based on the bulk Fra
macroscopic elastic free-energy, and therefore can be app
only to undulated surfaces with periodl52p/q0 large with
respect to the characteristic sizejs over which the nematic
scalar order-parameterS varies close to the surface. Whe
l,js , a decrease ofS is expected in the vicinity of the
surface@9#; this effect could be taken into account by expli
itly including S in the starting free energy@10#. Moreover,
since the surface energy is actually spread over a thin in
facial layer of thicknessd (.10 nm for dispersion forces!,
the validity of our analysis also requiresl@d.

P.G. acknowledges the support of a Chaire Joliot
l’ESPCI. The work was partially supported by the Europe
Union under Contract No. BRRT-CT97-5003.
n-
@1# P. G. de Gennes and J. Prost,The Physics of Liquid Crystals
~Clarendon Press, Oxford, 1993!.

@2# D. W. Berreman, Phys. Rev. Lett.28, 1683~1972!.
@3# S. Faetti, Phys. Rev. A36, 408 ~1987!.
@4# E. L. Wood, G. W. Bradberry, P. S. Cann, and J. R. Samb

J. Appl. Phys.82, 2483~1997!.
@5# A. Rapini and M. Papoular, J. Phys.~Paris! Colloq. 30, C4-54

~1969!.
s,

@6# F. C. Frank, Discuss. Faraday Soc.25, 19 ~1958!.
@7# J.-B. Fournier and P. Galatola~unpublished!.
@8# P. M. Chaikin and T. C. Lubensky,Principles of Condensed

Matter Physics~Cambridge University Press, Cambridge, E
gland, 1995!.

@9# M. Nobili and G. Durand, Phys. Rev. A46, R6174~1992!.
@10# See, e.g., G. Vertogen and W. H. de Jeu,Thermotropic Liquid

Crystals~Springer-Verlag, London, 1988!.


